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Abstract

Insurance fraud is a major source of inefficiency in insurance mar-
kets. A self-justification of fraudulent behavior is that insurers are bad
payers who start nitpicking if an opportunity arises, even in circum-
stances where the good-faith of policyholders is not in dispute. We
relate this nitpicking activity to the inability of insurers to commit
to their auditing strategy. Reducing the indemnity payments acts as
an incentive device for the insurer since auditing is profitable even if
the claim is not fraudulent. We show that optimal indemnity cuts are
bounded above and that nitpicking remains optimal even if it induces
adverse effects on policyholders’ moral standards.
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1 Introduction

Insurance fraud is widely considered to be a major source of inefficiency in
insurance markets. However, although it is a recognized fact that fraud costs
insurance companies billions of dollars every year,1 it is striking to observe
how insurance defrauders often do not perceive insurance claim padding as an
unethical behavior and even tend to practice some kind of self-justification. A
common view among consumers holds that insurance fraud would just be the
rational response to the unfair behavior of insurance companies.2 Consumers
would tend to neutralize the psychological costs of their inappropriate be-
havior by considering it as the counterpart of the firms’ unfair behavior: An
eye for an eye would thus be the rule of the insurance fraud game (Strutton
et al., 1994, 1997; Fukukawa et al., 2007).

Perceiving unfair behavior of insurance companies is often associated with
the popular view according to which insurers would be bad payers that start
nitpicking if an opportunity arises. Apart from the fact that disputes are
sometimes induced by the deliberate bad faith of one of the two parties,
more often than not consumers’ complaints are motivated by the complexity
of insurance contracts and by the difficulty to adapt oneself to (and even
sometimes to figure out) all possible contingencies to which the contract may
apply.3 It is true that insurance policies are usually very precise. They specify
the various contingencies in which claims can be filed by policyholders, with
exclusions and limits on payments. These clauses are often designed to lead
policyholders to exert the appropriate effort when there is a risk of moral

1According to the Coalition Against Insurance Fraud, insurance fraud steals at least
$80 billion every year in the US. See www.insurancefraud.org.

2Tennyson (1997, 2002) emphasizes that the psychological attitude toward insurance
fraud is related to negative perceptions of insurance institutions. For instance, Tennyson
(2002) shows that consumers who are not confident of the financial stability of their insurer
and those who find auto insurance premiums to be burdensomely high are more likely than
others to find fraud acceptable.

3An example, among thousands, drawn from The Telegraph (7 December 2011) il-
lustrates how complexity may jeopardize the efficiency of risk sharing through insurance
contracts: “A reader from Hampshire tells how she was caught out by the small print in
her travel insurance policy when she took a taxi to Gatwick to catch a flight to Luxor.
She was delayed by traffic and bad weather conditions and ended up missing her flight,
and her holiday. Her insurer refused to pay out for the lost holiday (nearly £3,000), be-
cause the policy only specified cover travel by scheduled public transport. Insurance small
print is one of the most common stumbling blocks for travelers and potentially the most
expensive.”
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hazard. However, they also frequently allow insurers to reduce indemnity
payment in circumstances where policyholders cannot be blamed for some
deliberate inappropriate behavior.4 This may be at the origin of the feeling
that the insurer legally profits from a situation where the policyholder is
undoubtedly in good faith but the small print of the contract allows the
insurer to deny the claim or to reduce the indemnity payment.

What is the logic of such behaviors? Why do insurers sometimes start
nitpicking about claims, although the honesty of their customers is not dis-
puted? This is a true puzzle because nitpicking induces some degree of
uncertainty in the way the insurance contract is enforced, and for that rea-
son it reduces the efficiency of the insurance coverage. Consequently, even if
nitpicking is reflected in lower insurance premiums, the competition between
insurers should lead them to offer the most efficient coverage and to refrain
from such an apparently inefficient behavior. If nitpicking is so widespread in
the insurance industry, its raison d’être must be related to insurance market
mechanisms and not to the deviant behavior of some unscrupulous oppor-
tunistic insurers. The objective of this paper is to analyze this issue.

Our starting point is the behavior of insurers that are confronted with
claims fraud. Insurers spend resources to monitor claims through a spectrum
of verification procedures that go from the settling of the apparently honest
claims in a routine way to the referral of most dubious claims to a Special In-
vestigative Unit (SIU). Red flags and sometimes advanced scoring techniques
may be used to channel claims in the most efficient way. The principles that
guide these audit mechanisms have been analyzed in costly verification mod-
els where insureds have private information about their losses and insurers
can verify claims by incurring an audit cost.5

Among various issues, this literature has shown how the ability of in-
surers to commit to an auditing policy may affect the efficiency of auditing
mechanisms. In the most simple audit models, it is optimal to fully deter
fraud through claims verification if insurers can commit to audit claims with
a given probability whatever the hit rate. On the contrary, the fraud rate
remains positive if insurers are unable to commit (see Picard, 1996). In more
sophisticated models with heterogeneous policyholders, the impossibility to

4E.g., in cases where the clauses of the insurance contract are related neither with the
origin of the accident nor with its severity and where the policyholder was not aware that
his behavior would trigger the cancelation or a reduction in the indemnity payment.

5See Picard (2001) for a survey and Dionne et al. (2009) for an analysis of the link
between claims auditing and the use of red flags, including scoring techniques.
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commit induces a larger fraud rate than what would be optimal otherwise
(see Dionne & Gagné, 2001). The fact that there is some positive fraud rate
provides incentives to monitor claims, but this residual fraud will be reflected
in higher insurance premiums paid by policyholders and ultimately by a less
efficient risk sharing through insurance contracting.

Although the intensity of the commitment issue can be weakened in a
dynamic setting where insurers can acquire the reputation of being tough
auditors (Krawczyk, 2009) or when the monitoring of claims can be dele-
gated to an independent agent in charge of investigating claims (Melumad &
Mookherjee, 1989) or to a common agency (Picard, 1996), this commitment
problem remains an issue. In what follows, we reconsider the commitment
problem in a setting where the legal enforcement of insurance contracts gives
some leeway to the insurer in deciding how much money to pay the claimant.

When insurers verify a claim, they can detect whether it is fraudulent or
not. However, auditing claims may also provide information (a signal about
the circumstances of an accident) that triggers some clauses of the contract
that allow the insurer to partially or fully deny obligation to indemnify the
policyholder. If moral hazard is not at stake, then conditioning the indemnity
payment on such a random signal reduces the efficiency of the insurance
coverage without exerting any incentive effect on policyholders. However,
if the insurer cannot commit to the audit probability, then the possibility
of exploiting such information obtained through audit acts as an incentive
device for the insurer. To put it differently, if auditing may be profitable to
the insurer even if the claim is not fraudulent, then he will be prompted to
verify claim for a lower rate of fraud than if the only motive for auditing is
to detect cheaters.

This issue can be reformulated in more general terms as an optimal con-
tracting problem between principal and agent. The principal (the insurer)
offers a risk-sharing contract to the agent (the policyholder). In a symmet-
ric information setting, the optimal risk sharing involves a transfer that is
a function of the random wealth to be shared between principal and agent
and of nothing else. However, we know from Holmström (1979) that this
conclusion is invalidated under moral hazard: the transfer from principal to
agent should be a function not only of the wealth that has to be shared but
also on any signal that would be informative on the agent’s effort. In this
paper we come to a similar conclusion in a setting without moral hazard: it
is optimal to design the contract in such a way that the value of the signal
affects the cost to the principal of making a decision (auditing claims with a
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given probability) that would be ex ante mutually advantageous but to which
the principal is unable to commit. Conditioning the transfer on the signal
reduces the efficiency of the risk sharing agreement, but it also provides in-
centives to the principal, and ultimately a departure from the optimal risk
sharing will be welfare improving.

From a more specific standpoint, our analysis is also related to the liter-
ature on “shrouded” costs that investigates the competition between firms
that provide all-inclusive services, and firms that hide information on add-
ups charged in addition to the price of a base service. In particular, Gabaix
& Laibson (2006) show that shrouding firms survive at equilibrium when two
types of consumers coexist on the market, rational ones that anticipate add-
up costs and take advantage of low price of base services, and myopic ones.
We also obtain that nitpicky firms survive the competition pressure, but in
our framework there are no myopic consumers: they are all fully rational.

The paper is organized as follow. In Section 2, we investigate the nit-
picking issue by considering a simple two-state setting where an accident
corresponds to a unique loss level and insurers cannot commit to their audit
strategy. We first show that it is optimal to adopt a nitpicking strategy that
results in randomly cutting the contractual insurance indemnity on audited
claims. We establish that nitpicking would be suboptimal if insurers were
able to commit to their auditing strategy. Thus, the prevalence of nitpicking
in insurance market reveals the existence of the commitment problem. We
then characterize the optimal indemnity cut given the information gathered
(i.e., the signal perceived) on each claim audited. We establish that the opti-
mal indemnity cut is bounded above, meaning that the insurer refrains from
reducing the indemnity payment in cases where he would be legally entitled
to do so. Section 2 ends by investigating the effects of nitpicking on poli-
cyholders’ moral standards. Here we assume that defrauders incur a moral
cost that decreases with the intensity of the insurer’s nitpicking activity. We
show that despite this adverse effect on moral standards, nitpicking remains
optimal. Section 3 extends our results to a more general setting in which
losses may be more or less important. Section 4 investigates how nitpicking
affects the incentives to exert an effort that diminishes the probability of an
accident. We show that nitpicking used as a commitment device also allows
the insurer to contain the moral hazard problem when it is not too intense.
Section 5 concludes. All proofs are in Appendix.

5
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2 The model

2.1 Nitpicking and optimal insurance contracts

Consider an insurance company providing coverage to individuals (house-
holds or businesses) against an accident that occurs with probability π and
results in a loss L. Denote by P the insurance premium and I the con-
tractual indemnity. Individuals file fraudulent claims with probability α. In
other words, α denotes the probability to report a loss although no accident
occurred. Thus, α(1 − π)/[π + α(1 − π)] is the fraction of claims that are
fraudulent.

The insurance company follows an audit rule which consists in verifying
the genuineness of the accident for a proportion β of the claims. Let c
be the cost of an audit, with c < L. Audit reveals without ambiguity a
fraudulent claim, i.e., that no accident occurred (we discuss the case of an
imperfect auditing in footnote 10), in which case the insured receives no
indemnity and incurs a litigation cost B. If an accident did occur, auditing
also provides detailed information about the circumstances of the accident
and about the loss itself: which evidences the insured is able to provide
about the extent of his loss, whether he did actually follow the requirements
specified in the insurance contract, whether an exclusion applies, and so on.
The insurance contract specifies cases in which the payment of the indemnity
may be denied or reduced by the insurer even if the policyholder’s good faith
is not questioned. Hence, in case of an audit, the actual indemnity for an
honest claim will be written as (1− z̃)I where z̃ corresponds to the fraction
of the contractual reimbursement cut by the insurer. Such cuts vary case
by case and thus z̃ is a random variable. Circumstances that may trigger a
cut in the indemnity payment are involuntary and do not correspond to a
deliberate inappropriate behavior as in moral hazard issues: consequently z̃
cannot be controlled by the policyholder. However, final decisions depend
on the instructions received by claims handlers and the insurer somehow
controls the intensity of his nitpicking activity, which is characterized by
q ∈ [0, 1]. In a contract with nitpicking intensity q the insurance company
save on average a fraction q of the contractual indemnity I. More precisely,
the nitpicking technology is such that z̃ is distributed according to the c.d.f.
F (z, q) = Pr{z̃ ≤ z|q} over [0, 1], where q = E[z̃|q] and ∂F/∂q ≤ 0. Hence
q = 0 corresponds to a deterministic insurance policy where the contractual
indemnity I is paid without any restriction to all claimants when fraud has
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not been detected. When q > 0, the indemnity payment is stochastic: a
fraction z̃ of the contractual indemnity I is retained and an increase in q
shifts z̃ in the sense of first-order stochastic dominance.

Here the nitpicking technology is taken as given and characterized by
this family of probability distributions F (·, q) indexed by q. We will later
show how an optimal nitpicking technology may be derived. In any case,
we assume that nitpicking does not induce any additional cost and thus the
insurer can commit to this behavior. Consequently, the nitpicking intensity
q may be considered as the implicit part of the insurance contract, P and I
being the explicit part.

Thus, the expected cost of claims (indemnity + audit cost) per policy-
holder is given by

C = [π(1− βq) + (1− π)(1− β)α]I + [π + (1− π)α]βc (1)

The first term in (1) corresponds to the per-individual expected indemnity
payment, where honest and fraudulent claims amount to outlays equal to
π(1 − βq)I and (1 − π)(1 − β)αI respectively. Note in particular that βq
corresponds to the fraction of contractual indemnities not paid on average to
honest claimants. The second term corresponds to the expected audit cost
per policyholder: a contract results in an honest claim with probability π
and a fraudulent one with probability (1− π)α, and claims are audited with
probability β entailing a cost c.

Policyholders are risk averse. They maximize the expected utility u(wf )
of final wealth wf , with u′ > 0, u′′ < 0. The expected utility of an insured is
written as

Eu = π{(1− β)u(w − P − L+ I) + βE[u(w − P − L+ (1− z̃)I)|q]} (2)

+(1− π){(1− α)u(w − P ) + α[(1− β)u(w − P + I) + βu(w − P −B)]}

The first term in (2) corresponds to the expected utility in case an acci-
dent occurs: with probability 1−β the insurance company pays the indemnity
without auditing, while with probability β the claim is audited and the out-
come is a partial payment of the contractual indemnity which depends on the
insurer’s nitpicking process. The second term corresponds to the no-accident
situation, the insured being honest with probability 1− α or filing a fraudu-
lent claim with probability α, in which case he receives the indemnity if no
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audit occurs, but he faces litigation costs B if he is spotted.6

As a preliminary, let us first consider the benchmark case where insurers
can commit to their auditing strategy. For policyholders to be deterred from
filing fraudulent claims, Eu should be maximized at α = 0, which requires
β ≥ β∗(I, P ) given by

β∗(I, P ) =
u(w − P + I)− u(w − P )

u(w − P + I)− u(w − P −B)
. (3)

Under a competitive insurance market, the optimal insurance contract
{I, P, β, q}, including the preannounced audit probability β, maximizes the
individuals’expected utility

V (I, P, β, q) ≡ (1− π)u(w − P ) + πu(w − P − L+ I)

− πβ{[u(w − P − L+ I)− E[u(w − P − L+ (1− z̃)I)|q]},

with respect to I, P ≥ 0, β, q ∈ [0, 1] under the non-negative profit constraint

P ≥ π[I + β(c− qI)],

and
β ≥ β∗(I, P ).

The following proposition characterizes the optimal insurance contract in
that case:

Proposition 1 If the insurer can commit to its auditing strategy, then nit-
picking is suboptimal: the optimal insurance contract is such that q = 0. In
fact, if that were possible, the insurer should optimally reward honest insureds
by awarding them a bonus R above the contractual indemnity I in case of an
audit, and paying only I for non-audited claims.

Proposition 1 shows that the insurer should choose q = 0 if it were able
to commit to its auditing strategy whatever the fraud rate. Indeed, fraud
would be fully deterred (i.e., β = β∗(I, P ) is optimal) and then nitpick-
ing is suboptimal because it would artificially create an additional risk for
the policyholder. This proposition also states that under the commitment

6We assume in this section that individuals do not feel social or moral pressure behaving
dishonestly. We consider moral standards in Section 2.4.
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assumption, payment should optimally be distorted in the other direction,
by paying a higher indemnity I + R, with R > 0, for honest claims that
are audited and only I otherwise.7 Nitpicking goes exactly in the opposite
direction.

We now turn to the no-commitment case in the whole remaining part of
this paper. In that case, the fraud strategy of the insured and the audit strat-
egy of the insurer (α and β respectively) must be mutually best responses.
As usual in audit models without commitment, insurers and policyholders
play mixed strategies such that they are indifferent between the alternatives
they may choose from (auditing or not, and defrauding or being honest re-
spectively). For a given insurance contract (I, P, q), using (1) and (2), on
can easily verify that the Nash equilibrium of this insurer-policyholder game
is such that β = β∗(I, P ) given by (3) and α = α∗(I, q) given by

α∗(I, q) =
π(c− qI)

(1− π)(I − c)
if c > qI, (4)

and α∗(I, q) = 0 if c ≤ qI.
In particular, we may observe that the equilibrium fraud rate α∗ is de-

creasing with respect to I and q, which shows that fraud may be decreased ei-
ther by increasing the contractual indemnity or by nitpicking more intensely.
If c ≤ qI, then fraud fully vanishes at equilibrium, i.e., α∗(I, q) = 0, because
the return on nitpicking is larger than the audit cost, so that insurers will
monitor claims even if there is no fraud. Hence, at equilibrium, either poli-
cyholders are indifferent between defrauding and being honest (when c > qI)
or there is no fraud (when c ≤ qI). In both cases, the policyholder’s expected
utility is written as

Eu∗(I, P, q) ≡ (1− π)u(w − P ) + πu(w − P − L+ I)

− πβ∗(I, P ){[u(w − P − L+ I)− E[u(w − P − L+ (1− z̃)I)|q]}
7The intuition of this result is simple. At R = 0, slightly increasing R and decreasing I

in such a way that the expected indemnity remains constant is welfare improving because
such changes reduce the audit cost (from ∂β∗/∂I > 0), with only second-order effect on
expected utility. Note however that, in practice, it might be hard to implement such a
distortion in favor of audited honest claimants. Indeed, announcing the proportion of
audited claims would be necessary to sustain the insurer’s commitment, but when R > 0
insurers would be better off hiding the number of verified claims to reduce aggregate
indemnity payment. In other words, the bonus R may jeopardize the insurer’s commitment
to its auditing strategy.
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Using β = β∗(I, P ) allows us to write the per-individual insurance cost
as

C∗(I, q) ≡ [π + (1− π)α∗(I, q)]I = π(1− q)I2/(I − c).
The optimal insurance contract then solves

max
I,P,q
{Eu∗(I, P, q) : P ≥ C∗(I, q)}. (5)

Before moving to the core of our analysis, the following Lemma charac-
terizes the optimal indemnity when there is no nitpicking.

Lemma 1 If insurers are not allowed to cut the contractual reimbursement
(i.e. if nitpicking is impossible: q = 0), then the optimal contract involves
overinsurance: I > L.

Lemma 1 states that the impossibility of insurers to commit to their au-
diting strategy leads them to offer insurance contracts with indemnity larger
than loss (this was established by Boyer, 2004 in a slightly different model).
The intuition is straightforward and is illustrated in Figure 1. Insurers are
incited to audit claims if the expected gain of auditing is larger than the
cost, which is the case if the fraud rate is larger than πc/(1 − π)(I − c). If
fraud were not at stake, then insurers would offer full coverage contract with
I = L. Graphically, the optimal insurance contract is at the tangency point
between the policyholder’s indifference curve Eu∗(I, P, 0) = u(w − πL) and
the fair odds line P = πI. However, if the insured can defraud and insurers
cannot commit to their auditing strategy, then the insurance premium is no
longer given by P = πI but by P = C∗(I, 0). Slightly increasing I over L
maintains the insurer’s incentives at the right level for a lower fraud rate, and
thus with a lower premium and only second-order risk-sharing effects, and
ultimately that will be favorable to the insured. Thus, the tangency point
between the zero profit line and the optimal indifference curve is above and
on the right of the no-fraud case at I = I∗ > L.8

The question is to determine if it is optimal that insurance companies nit-
pick claims when they are unable to commit to an audit strategy. Proposition
2 shows that this is actually the case.

8A similar result holds in principal-agent models with adverse selection and auditing
but without risk sharing. For example, in a procurement problem with hidden cost,
Khalil (1997) shows that contrary to the standard result of adverse selection problems,
the optimal contract involves over-production for the high cost firm to induce the principal
to audit the agent.
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P

πI

C∗(I, 0)

Eu = u(w − πL)
Eu∗

I∗Lc0

Figure 1: Optimal insurance contract without commitment.

Proposition 2 The optimal insurance contract entails nitpicking, i.e. q >
0, even under the constraint I ≤ L.

Proposition 2 shows that optimal insurance contracting involves some de-
gree of nitpicking by insurers. At first sight, this conclusion may seem para-
doxical, since the optimal contract maximizes the policyholder’s expected
utility under the non-negative profit constraint. However, the intuition fol-
lows the same line as the one of Lemma 1. (4) shows that increasing q leads to
a first-order decrease in the equilibrium fraud rate, because the gains drawn
from nitpicking provide an additional incentives to monitor claims. Nit-
picking also induces some degree of uncertainty in the insurance coverage,
which reduces the attractiveness of the contract for policyholder. However,
at the first order, the incentive effect dominates the risk sharing effect. Con-
sequently, practicing some degree of nitpicking is favorable to the insured
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himself. This conclusion still holds if overinsurance were prohibited, say be-
cause of a risk of moral hazard: the status quo situation without nitpicking
would then be at I = L, with an unchanged conclusion.9,10

2.2 Optimal nitpicking strategy

We have assumed sofar that the nitpicking technology was given to the in-
surer, and that his only choice was the expected level of indemnity cut: i.e.,
the insurer just had to choose within a family of probability distributions
F (z, q) indexed by the nitpicking intensity q. In practice, a nitpicky insurer
(in concrete terms a claims adjuster, possibly with the help of an expert or an
investigator) may firstly obtain detailed information about the circumstances
of the accident by auditing the claim. In a second stage, he has to decide
whether or not and to what extent he will use this information to reduce
the indemnity payment under the contractual indemnity although auditing
didn’t reveal any fraudulent behavior. At this second stage, the insurer may
have some leeway when deciding on the indemnity allocated to the claimant.

Thus, we may consider that the insurer has to decide on indemnity cuts
based on the information which is available to him after auditing. In what
follows, this information is summarized by a random variable x̃ distributed

9When I > L, an increase in q at q = 0 allows the insurer to operate a mean-preserving
contraction in the policyholders’ final wealth: the expected indemnity (and thus the pre-
mium) and the indemnity paiement are reduced. When I = L, the risk induced by the
reduction in the indemnity corresponds to a second-order welfare loss.

10Assuming imperfect auditing would not change our results but that would complicate
the algebra. Suppose a fraction ε of fraudulent claims stay unspotted when audited.
Following the same reasoning as above, we obtain that the equilibrium mixed strategies
become

αε(I, q) = α∗(I, q)(I − c)/[(1− ε)I − c] < α∗(I, q)

and
β∗ε(I, P ) = β∗(I, P )/(1− ε) > β∗(I, P ).

Hence, the fraud rate threshold that makes the insurer indifferent between auditing
or not auditing is reduced, while the audit rate threshold that makes no-loss individuals
indifferent between filing a claim or being honest is increased. At equilibrium, the expected
utility of the insured is similar to (3) but with β∗(I, P ) replaced by β∗ε(I, P ) (an thus it
decreases with ε) while the insurer per-individual cost becomes

Cε(I, q) ≡ π(1− q − ε)I2/[(1− ε)I − c]

which increases with ε.

12
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over [0, 1] with c.d.f. G(x) and density g(x) = G′(x). We interpret x̃ as
the maximum cut in the indemnity payment the insurer is legally entitled
to apply, given all relevant available information on the claim. x̃ cannot be
controlled by the policyholder. It may correspond to accident circumstances
or to loss estimates that are ambiguous, e.g., when there is no witness of a
car accident, or when the policyholder cannot produce bills but only photos
of property destroyed by fire, or when there is no second-hand market for
used stolen goods... In such cases, the law of insurance contracts or decisions
in court may specify whether an exclusion applies or how the loss should be
valued, but the insurer has some leeway: he may either confine itself to strict
legal stipulations or treat its customers with more consideration. Thus, the
indemnity cut strategy z (i.e. the fraction of the contractual indemnity that
will not be paid) is a function of x that must satisfy z(x) ≤ x for all x in
[0, 1].

It is straightforward to verify that the non-negative profit constraint is
obtained by substituting Ez(x̃) ≡

∫ 1

0
z(x)dG(x) to q in function C∗. Now

the policyholder’s expected utility Eu∗ depends on I, P and on function z(·)
and it may be written as

Eu∗ = (1− π)u(w − P ) + π[1− β∗(I, P )]u(w − P − L+ I)

+πβ∗(I, P )

∫ 1

0

u(w − P − L+ (1− z(x))I)dG(x).

Thus, still assuming a competitive insurance market, the optimal insur-
ance contract, including the nitpicking strategy, solves

max
I,P,z(·)

{Eu∗(I, P, z(·)) : P ≥ C∗(I, Ez(x̃)), 0 ≤ z(x) ≤ x for all x}.

The resulting nitpicking strategy is characterized is the following Proposition.

Proposition 3 The optimal nitpicking strategy z(·) is characterized by a
ceiling x̂ > 0 such that:

z(x) =

{
x ∀x < x̂
x̂ ∀x ≥ x̂

Proposition 3 states that the optimal strategy of the insurer is to reduce as
much as possible the indemnity to what is legally possible up to ceiling x̂. The
intuition of this result is as follows. The optimal nitpicking strategy results
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from a trade-off between on one hand the incentive advantage derived by the
insurer from a more intense nitpicking activity, and on the other hand the
negative effect of nitpicking on the risk coverage provided to policyholders.
The incentive advantage of nitpicking depends on the average reduction in
indemnity payment Ez(x̃). For a given average reduction Ez(x̃), the most
efficient strategy in terms of risk sharing would involve a uniform percentage
of reduction in the indemnity payment when a claim is audited. However, this
is not a feasible strategy because when x̃ is small, auditing may not provide
enough relevant information to the insurer that would allow him to decrease
the payment at the required level. Thus, the optimal strategy consists in
reducing the payment as much as possible (i.e. with z∗(x) = x) , but without
creating to much disturbances in the risk coverage, hence the ceiling x̂. In
other words, if auditing has not revealed any fraudulent behavior, then the
insurer should not exploit its information to decrease the indemnity over x̂
even if it could do so.

2.3 A case where fraud vanishes at equilibrium

The previous analysis shows that indemnity cut z(x̃) acts as a commitment
device that prompts the insurer to audit claims. As shown in the definition
of α∗(I, q) given by (4), the larger q = Ez(x̃), the lower the fraud rate that is
necessary to preserve adequate audit incentives. The optimal contract trades
off the drawback of less efficient risk coverage induced by indemnity cuts and
the increase in insurance cost caused by fraud. As expressed by the constraint
z(x̃) ≤ x̃, the nitpicking intensity is constrained by the information that can
be gathered through audit and also by the legal stipulations that put limits on
the way the insurer can exploit this information to cut indemnities. In other
words, the nitpicking strategy analyzed above corresponds to the optimal
behavior of an insurer who is legally constrained in the way he determines
the cut on contractual reimbursement. An interesting limit case is when
there were no legal restraint on such cuts.11 The insurer could then impose
a unique cut, say q, on the contractual reimbursement of all audited claims,
with q ≤ c/I. When q = c/I the indemnity cut is equal to the audit cost
and thus insurers are willing to audit claims even if there are no fraudulent
claims. The optimal contract would then be a solution to

max
I,P,q
{Eu∗(I, P, q) : P ≥ C∗(I, q), q ≤ c/I},

11That would correspond to the case where G(x) = 0 for all 0 ≤ x < 1 and G(1) = 1.
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with now

Eu∗(I, P, q) ≡ (1− π)u(w − P ) + π[1− β∗(I, P )]u(w − P − L+ I)

+πβ∗(I, P )u(w − P − L+ (1− q)I).

We show in the Appendix that :

Proposition 4 If there is no legal restraint on the indemnity cut for audited
claims, then the optimal contract is such that q = c/I and no fraudulent
claims are filed i.e., α = 0.

Proposition 4 highlights the strength of nitpicking: if no legal limit were
imposed on indemnity cuts (or if these limits were not really constraining),
then it would be more efficient to provide audit incentives through such an
activity - which apparently goes against the policyholders’ interest - than by
tolerating a positive rate of fraud in the market.

2.4 Insurers’ reputation and moral standards

Cutting unilaterally contractual indemnity for legitimate claims is certainly
a cause of disputes and there is no doubt that it induces resentment against
insurers. Thus, nitpicking could tarnish the insurers’ reputation, with an
adverse effect on policyholders’ moral standards. Hence nitpicking may have
the counterproductive result of inducing more individuals to file fraudulent
claims.

To investigate this problem, consider that individuals incur moral costs
when they defraud the insurers, and these costs depend on the insurers’ rep-
utation. The more insurers are known for nitpicking, the less the individuals’
cost of defrauding them. Hence, when individuals behave honestly, they in-
cur no moral cost, while their final wealth is reduced by γ(q) > 0 when they
file a fraudulent claim, with γ′(q) < 0, where q = Ez(x̃). Compared to the
previous sections, it is easily verified that only the audit probability (3) is
affected by these costs. It now depends on q and becomes

β∗(I, P, q) =
u(w − P − γ(q) + I)− u(w − P )

u(w − P − γ(q) + I)− u(w − P − γ(q)−B)
, (6)

with ∂β∗/∂q > 0: the larger the nitpicking intensity, the larger the audit
probability that dissuades policyholders from defrauding. Hence the optimal

15

ha
l-0

06
75

10
6,

 v
er

si
on

 1
 - 

29
 F

eb
 2

01
2



contract is a solution to program (5) where the audit probability that affects
the insured’s expected utility Eu∗ is β∗(I, P, q) instead of β∗(I, P ). However,
the fraud rate α∗(I, q) that induces auditing is independent from the link
between the intensity of nitpicking and defrauders’ moral costs. Thus, the
logics of the reasoning that explained why nitpicking is optimal is not affected
by the existence of such costs.

Proposition 5 The optimal insurance contract still entails nitpicking, i.e.
q > 0, when defrauders incur moral costs that decrease with q.

We have observed that nitpicking would be a suboptimal behavior if in-
surers could commit to their audit strategy. This conclusion is still valid, and
even reinforced if nitpicking induces lower moral standards. Indeed, when
q is increasing from 0 to a positive value, the audit rate β∗(I, P, q) that
discourages fraud increases, and under the commitment assumption, this
will induce a negative effect on the policyholder’s equilibrium expected util-
ity. This clear-cut difference between the commitment and no-commitment
cases reinforces the idea that if nitpicking is a widespread phenomenon in
the insurance industry despite its adverse effects on moral standards, that
may be because it provides additional incentives to monitor claims, which is
ultimately favorable to policyholders themselves.

3 Continuum of losses

Let us now consider a setting where accidents generate insurable losses that
may differ from one claim to another. More explicitly, we assume that condi-
tionally on the occurrence of the accident - which still occurs with probability
π - the loss ˜̀ is a random variable distributed over an interval (0, L] accord-
ing to the c.d.f. F (`) with density f(`) = F ′(`). In that case, there are
two reasons for the insurer to audit claims: firstly to verify the occurrence
of the accident and secondly to assess the extent of the loss compared to the
insured’s claim. So, in addition to detect claims that do not correspond to a
true accident, the audit of claims also aims at spotting the individuals who
build up their claims. In practice, the cost of auditing claims is increasing
with the size of the claim. For simplicity, we will assume that this cost is
proportional to the announced loss i.e., it is given by c` for claim `, with
0 < c < 1.
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The further developments are guided by the following intuition. Because
losses differ between claims, individuals’ incentives to overstate losses also
differ: an individual having experienced a large loss expects to receive a
large indemnity from the insurer if his claim is honest. Relative to this
indemnity, an overstatement of a given size of his loss would only lead to a
relatively small increase in the indemnity if the claim is not audited, or to
a reimbursement corresponding to the insurer’s assessment of the loss and
litigation costs in case of an audit. Moreover, the policyholder may expect a
larger probability to have his claim audited if he announces a larger loss.

Let EU(`, ̂̀) be the expected utility of an individual with loss ` who over-
states his loss by announcing ˆ̀ larger than ` and let EU(`) be the expected
utility in the case of an honest claim ˆ̀ = `. The audit probability may
depend on the size of the claim: it will be denoted by β(ˆ̀) for a claim ˆ̀.
The indemnity actually paid is now a function I(·) of the claim ˆ̀ if there
is no audit, and of the true loss, possibly reduced by the nitpicking activity
of the insurer, if the claim is audited. In this second case, the indemnity
payment is I((1 − z(x̃)) `), where x̃ is defined as before and z(x̃) is the re-
duction rate in the assessment of the claim, with z(x) ≤ x for all x in [0, 1].
We simplify matters by restricting attention to insurance contracts without
overinsurance, possibly because overinsurance would induce adverse conse-
quences in terms of moral hazard. We thus assume 0 ≤ I(`) ≤ ` for all `.
The policyholder still incurs the litigation cost B if auditing reveals fraud
and, for simplicity, we here consider the case where individuals do not have
moral costs of defrauding. Thus, we may write

EU(`, ˆ̀) ≡ β(ˆ̀)Eu(w−P−`+I((1−z(x̃))`)−B)+[1−β(ˆ̀)]u(w−P−`+I(ˆ̀))

if ̂̀> ` and

EU(`) ≡ β(`)Eu(w−P − `+ I((1− z(x̃))`)) + [1−β(`)]u(w−P − `+ I(`)).

An individual with loss ` > 0 tells the truth (i.e. announces ˆ̀= `) if the
incentive constraints EU(`) ≥ EU(`, ˆ̀) are satisfied for all ˆ̀ in (`, L]. For
individuals who did not experience an accident, the incentives constraints
are written as

u(w − P ) ≥ β(ˆ̀)u(w − P −B) + [1− β(ˆ̀)]u(w − P + I(ˆ̀)) (7)

for all ˆ̀ in (0, L]. Hence, for these individuals, defrauding is equivalent to
choosing one of the lotteries Z(ˆ̀) ≡ {−B, β(ˆ̀); I(ˆ̀), 1 − β(ˆ̀)}, ˆ̀ ∈ (0, L],
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and their incentive constraints are satisfied if these insured, with status quo
wealth w − P , do not benefit from choosing one of these lotteries Z(ˆ̀).

Lemma 2 If individuals display NIARA preferences12 and if I(`) and β(`)
are non-decreasing in `, then all policyholders with losses ` > 0 are deterred
to file a fraudulent claim if the incentive constraints (7) of the individuals
with no loss are satisfied.

The intuition of Lemma 2 is simple. For a type ` individual (with ` = 0
if he has not experienced any accident), filing a fraudulent claim ˆ̀ larger
than ` is a risky choice: he gains I(ˆ̀)− I(`) if his claim is not audited, but
he has to pay B in case of an audit. Note that when ` > 0, the earnings
in case of truthful revelation of the loss may also be uncertain in case of
nitpicking. However, under the assumptions made in the Lemma, the wealth
of an individual who does not defraud is always larger when ` = 0 than when
` > 0. If the individuals’ absolute risk aversion is not increasing with wealth
and if policyholders are deterred to file fraudulent claims (which is a risky
venture) when ` = 0, then a fortiori they will choose not to defraud when
` > 0.

We assume in the following that the optimal insurance contract satisfies
the condition of Lemma 2. Of course this will have to be checked. Incentive
constraints are thus satisfied for all ` in (0, L] if they are satisfied for ` = 0.
The optimal audit strategy is such that (7) is binding for all ` > 0, leading
no-loss individuals to be indifferent between being honest or announcing any
claim ` ∈ (0, L]. The audit probability written as a function β(`) of the claim
size thus satisfies

β(`) =
u(w − P + I(`))− u(w − P )

u(w − P + I(`))− u(w − P −B)
. (8)

Under the assumptions made in Lemma 2, we may consider the case where
only no-loss individuals file fraudulent claims. The expected cost C(`) of the
claims of size ` per policyholder then satisfies

C(`)h(`) = π{β(`)[c`+ EI((1− z(x̃))`)] + [1− β(`)]I(`)}f(`)

+ (1− π)σp(`){β(`)c`+ [1− β(`)]I(`)}
12Non Increasing Absolute Risk Aversion.
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where h(`) is the density function of the size of the claims, σ is the prob-
ability that a no-loss individual decides to defraud the insurer, and p(`) is
the density of the size of fraudulent claims over (0, L]. In other terms, a de-
frauder (necessarily a no-loss individual) chooses to announce ˆ̀∈ [`, ` + d`]
with probability p(`)d` and claims will be in the same interval with proba-
bility h(`)d`. The insurer is indifferent between auditing those claims or not
auditing if

p(`) =
π{EI((1− z(x̃))`) + c`− I(`)}f(`)

σ(1− π)[I(`)− c`]

We must have
∫ L
0
p(`)d` = 1 for p(·) to be a density function, which yields

the fraud probability of no-loss individuals

σ =
π

1− π

{∫ L

0

EI((1− z(x̃))`)

I(`)− c`
f(`)d`− 1

}
.

The claims probability distribution then satisfies

h(`) = πf(`) + (1− π)σp(`)

= πf(`)
EI((1− z(x̃))`)

I(`)− c`

At equilibrium, C(`) = πI(`) and the expected cost of a contract for the
insurer simplifies to

C =

∫ L

0

πI(`)h(`)d` = πE

[
I(`)I((1− z(x̃))˜̀)

I(˜̀)− c˜̀

]
.

The expected utility of the insured is given by

Eu∗(I(·), P, z(·)) ≡ (1− π)u(w − P ) + πEu(w − P − ˜̀+ I(˜̀))

−πE[β(˜̀){u(w − P − ˜̀+ I(˜̀))− u(w − P − ˜̀+ I((1− z(x̃))˜̀)}]

Assuming a competitive insurance market, the optimal contract satisfies

max
I(·),z(·),P

{
Eu∗(I(·), P, z(·)) : P ≥ πE

[
I(˜̀)I((1− z(x̃))˜̀)

I(˜̀)− c˜̀

]
, 0 ≤ I(˜̀) ≤ ˜̀

}
(9)

where β(·) is given by (8) and where expectation is taken with respect to
x̃ and ˜̀. Program (9) extends the problem considered in Section 2.2 to the
case where losses may have different sizes, with a similar conclusion :
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Proposition 6 When individuals incur losses of different size, the optimal
insurance contract entails some degree of nitpicking by insurers: Ez(x̃) > 0.

4 Ex ante moral hazard and nitpicking

We argued above that the small print of an insurance contract may reduce
the policyholders’ moral hazard. Indeed, Holmström (1979) shows that under
moral hazard, it is optimal to condition the indemnity on any information
that is informative on the policyholder’s effort. Thus, in the setting of this
paper, if the probability distribution of x̃ were affected by the policyholder’s
effort, then designing an insurance contract with a contingent indemnity
would serve at the same time to reduce the (ex ante) moral hazard and to
fight the (ex post) claims fraud.

Consider that the probability of the loss - of a given size L - depends on the
behavior of the policyholder: it is denoted by πe where e is the policyholder’s
effort. For the sake of simplicity, assume there are only two levels of effort:
e ∈ {0, 1} and π0 > π1: Thus, the probability of the accident is diminished if
the policyholder exerts an effort e = 1 rather than no effort e = 0. Let de be
the desutility of exerting effort e, with d1 > d0. The policyholder’s behavior is
not observable by the insurer, but it is related to the verifiable index x̃ ∈ [0, 1].
Let Ge(x) = Pr{x̃ ≤ x|e} denote the c.d.f. of x̃ conditional on e. A decrease
of e from 1 to 0 shifts the distribution of x̃ in the sense of first-order stochastic
dominance, i.e., G0(x) ≤ G1(x) for all x in [0, 1], with a strong inequality on
a positive measure subset. When the insurer audits a claim, he observes if
the accident did actually occur or not and he also observes the realization of
x̃. Because the policyholder’s utility is separable between final wealth and
effort desutility, the policyholder’s incentive to defraud does not depend on
the effort undertaken ex ante: ex post, all individuals who didn’t suffer any
loss face the same dilemma when considering filing a fraudulent claim. The
policyholder’s expected utility with contract {I, P, z(.)} and effort e thus
simplifies to Eu∗e − de where

Eu∗e = (1− πe)u(w − P ) + πe[1− β∗(I, P )]u(w − P − L+ I)

+πeβ
∗(I, P )

∫ 1

0

u(w − P − L+ (1− z(x))I)dGe(x)

and he is induced to exert an effort e = 1 if Eu∗1 − Eu∗0 ≥ d1 − d0.
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Proposition 7 Under the optimal insurance contract {P, I, z(.)} character-
ized in Proposition 3, policyholders are induced to exert the high level of effort
e = 1 provided that π0 − π1 and d1 − d0 are not too large.

Thus, when the moral hazard problem is not too intense, nitpicking claims
with the only objective of providing audit incentives induce individuals to
exert the high level of effort. Contrary to deductibles, indemnity cuts only
affect audited claims and may vary from case to case depending on the in-
formation gathered during the audit.

5 Conclusion

Thus, nitpicking may prove to be welfare improving in insurance markets.
There are indeed (at least) two justifications for cutting down the indemnities
on the basis of information collected through claims auditing: solving the
ex ante moral hazard problem when perceived signals are informative on
the policyholder’s effort, and improving the insurers’ ex post commitment
to audit claims. When the focus is on this commitment problem, optimal
nitpicking trades off the drawback of a less favorable risk sharing between
insurer and insured against the efficiency gain of a lower equilibrium fraud
rate. Policyholders may legitimately complain of insurers’ unfair behavior
in the sense that nitpicking induces some degree of horizontal inequality.
However, this behavior is the rational response to a commitment problem,
and ultimately improving the credibility of the claim’s verification strategy
is in the policyholders’ best interest. Nitpicking is nevertheless a second-best
strategy: if insurers could make their claims monitoring perfectly credible,
for instance through a reputation effect or by delegating audit to independent
agents, then nitpicking would become a suboptimal strategy. In that sense,
nitpicking reveals the failure of these commitment devices.

Several extensions of our analysis would be worth investigating. In Sec-
tion 3, we have considered the case of losses that may differ from one individ-
ual to the other. However, we have restricted attention to a setting where at
equilibrium the only defrauders are individuals who have not experienced an
accident, while the policyholders who suffered a loss are deterred to build up
their claims. As loss overstatement is commonly found in insurance markets,
it would be interesting to extend our framework to a setting where claims
build up actually occurs at equilibrium. In Section 4, we have shown that
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nitpicking induces individuals to exert an effort that diminishes the proba-
bility of the loss when the cost of this prevention effort is not too large. If
the moral hazard problem is more intense, then insurers should face the com-
mitment problem and the moral hazard problem simultaneously. Interesting
questions then arise regarding the design of the indemnity schedule and the
nitpicking intensity. For instance, Proposition 3 has shown that the optimal
strategy is characterized by an upper limit on indemnity cuts. This may not
be true anymore under moral hazard if the law of insurance contracts allows
the insurers to fully cancel indemnity payments in cases that reveal a likely
inappropriate behavior of the policyholder.
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Appendix

A Proof of proposition 1

Let {I, P, β, q} be the optimal contract when the insurer can commit and
suppose q > 0. Consider the alternative contract {Î , P̂ , β̂, q̂} with P̂ = P, β̂ =
β, q̂ = 0 and Î = I(1−βq). We have: P̂ = P ≥ π[I +β(c− qI)] = π(Î + cβ̂).
Furthermore, using ∂β∗/∂I > 0, I > Î and P = P̂ gives β̂ = β ≥ β∗(I, P ) >
β∗(Î , P̂ ). Hence {Î , P̂ , β̂, q̂} is feasible. Using the concavity of u(·) yields

V (I, P, β, q) ≡ π{[1− β]u(w − P − L+ I) + βE[u(w − P − L+ (1− z̃)I)|q]}
+(1− π)u(w − P )

< πu(w − P − L+ I − βqI) + (1− π)u(w − P )

= πu(w − P̂ − L+ Î) + (1− π)u(w − P̂ ) = V (Î , P̂ , β̂, q̂),

which contradicts the optimality of {I, P, β, q}.
Let us now prove that it is optimal to grant a bonus R > 0 to non-

fraudulent audited claims. In that case, the policyholder’s expected utility
becomes

W (I, R, P, β) ≡ π[(1−β)u(w−P−L+I)+βu(w−P−L+I+R)]+(1−π)u(w−P ),

while the non-negative profit constraint is now written as P ≥ π[I+β(c+R)].
The optimal contract with commitment thus solves

max
P,I,R,β

{W (I, R, P, β) : P ≥ π[I + β(c+R)], β ≥ β∗(I, P )}.

Denote by L(I, R, P, β, λ, µ) ≡ W (I, R, P, β) + λ{P − π[I + β(c+R)]}+
µ[β − β∗(I, P )] the Lagrangian of this program. The first-order conditions
with respect to I, R and β are written as

∂L/∂I = π[(1−β)u′(w−P−L+I)+βu′(w−P−L+I+R)]−λπ−µ∂β∗/∂I = 0,
(10)

∂L/∂β = −π[u(w−P−L+I)−u(w−P−L+I+R)]−λπ(c+R)+µ = 0, (11)

and
∂L/∂R = πβ[u′(w − P − L+ I +R)− λ] ≤ 0, (12)
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with an equality if R > 0. Suppose R = 0 at the optimum. Using (11), we
get µ = λπc while (10) and ∂β∗/∂I > 0 yield

u′(w − P − L+ I) = λ(1 + c∂β∗/∂I) > λ,

which contradicts (12).

B Proof of Lemma 1

Let L(I, P, q, λ) ≡ Eu∗(I, P, q)+λ[P−C∗(I, q)] be the Lagrangian of program
(5), and let I∗(q), P ∗(q) and λ∗(q) be the optimal indemnity, premium and
Lagrange multiplier for a given nitpicking intensity q. We get

(∂L/∂P )|q=0 = −[(1−π)u′(w−P ∗(0))+πu′(w−P ∗(0)−L+I∗(0))]+λ∗(0) = 0,

(∂L/∂I)|q=0 = πu′(w−P ∗(0)−L+I∗(0))]−λ∗(0)π(I∗(0)−2c)I∗(0)/(I∗(0)−c)2 = 0,

and, as (I − c)2 > I2 − 2cI,

λ∗(0) = (1−π)u′(w−P ∗(0))+πu′(w−P ∗(0)−L+I∗(0)) > u′(w−P ∗(0)−L+I∗(0)),

which implies

u′(w − P ∗(0)) > u′(w − P ∗(0)− L+ I∗(0)),

hence I∗(0) > L from u′′ < 0.

C Proof of Proposition 2

Denoting ψ(q) be the value function of Problem 5 for a given value of q. The
Envelop Theorem gives

ψ′(q) = πβ∗(I∗(q), P ∗(q))
∂E

∂q
[u(w − P − L+ (1− z̃)I)|q]

∣∣
I=I∗(q),P=P ∗(q)

+
λ∗(q)πI∗(q)2

I∗(q)− c
.

Integrating by part allows us to write

E[u(w−P−L+(1−z̃)I)|q] = u(w−P−L)+I

∫ 1

0

u′(w−P−L+(1−z)I)F (z, q)dz,
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and thus

∂E

∂q
[u(w − P − L+ (1− z̃)I)|q]

∣∣
I=I∗(q),P ∗(q)

= I∗(q)

∫ 1

0

u′(w − P ∗(q)− L+ (1− z)I∗(q))
∂F (z, q)

∂q
dz.

Hence, from the mean-value theorem there exists ẑ(q) ∈ (0, 1) such that

∂E

∂q
[u(w − P − L+ (1− z̃)I)|q]

∣∣
I=I∗(q),P ∗(q)

= I∗(q)u′(w − P ∗(q)− L+ (1− ẑ(q))I∗(q))

∫ 1

0

∂F (z, q)

∂q
dz

= −I∗(q)u′(w − P ∗(q)− L+ (1− ẑ(q))I∗(q)),

where the last equality is obtained by differentiating the identity q = E[z̃|q] =

1−
∫ 1

0
F (z, q)dz, which gives

∫ 1

0
∂F (z, q)/∂qdz = −1. As β∗ < 1, we have

ψ′(q) > π
[
−I∗(q)u′(w − P ∗(q)− L+ (1− ẑ(q))I∗(q)) + λ∗(q)I∗(q)2/(I∗(q)− c)

]
,

and finally, using ẑ(0) = 0 and u′(w − P ∗(0)− L+ I∗(0)) < λ∗(0), we get

ψ′(0) > πλ∗(0)I∗(0) [−1 + I∗(0)/(I∗(0)− c)] = πcλ∗(0)I∗(0)/(I∗(0)− c) > 0,

which implies q > 0 at an optimal solution to Problem 5.

D Proof of proposition 3

Pointwise maximization with respect to z(x) yields

[−πβ∗Iu′(w − P − L+ (1− z(x))I) + λπI2/(I − c)]g(x) ≥ 0, (13)

for all x ∈ [0, 1] with an equality if z(x) < x. Consequently, for all x such
that g(x) > 0 we have β∗u′(w − P − L + (1 − z(x))I) = λI/(I − c) when
z(x) < x, and β∗u′(w−P −L+(1−z(x))I) ≤ λI/(I− c) when z(x) = x. As
u(·) is concave, u′(w− P −L+ (1− z)I) is strictly increasing in z, implying
that the optimal solution is characterized as in Proposition 3, with threshold
x̂ defined by

β∗u′(w − P − L+ (1− x̂)I) = λI/(I − c),
for optimal values of P, I and λ.
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E Proof of proposition 4

Denote by L(I, P, q, λ) ≡ Eu∗(I, P, q)+λ[P −C∗(I, q)] the Lagrangian of the
insurer’s program and assume that q < c/I at the optimum. The first-order
conditions with respect to I and q are given by

∂L/∂I = π[(1− β∗)u′(w − P − L+ I) + (1− q)β∗u′(w − P − L+ (1− q)I)]

−(∂β∗/∂I)[u(w − P − L+ I)− u(w − P − L+ (1− q)I)]

−λ(1− q)I(I − 2c)/(I − c)2 = 0, (14)

and

∂L/∂q = πI[−β∗u′(w − P − L+ (1− q)I) + λI/(I − c)] = 0. (15)

Rearranging terms of (14) and using (15) yield

(1− β∗)u′(w − P − L+ I) =
∂β∗

∂I
[u(w − P − L+ I)− u(w − P − L+ (1− q)I)]

−λ(1− q)Ic
(I − c)2

,

where
∂β∗

∂I
=
u′(w − P + I)[u(w − P )− u(w − P −B)]

[u(w − P + I)− u(w − P −B)]2
.

Using the concavity of u(·) yields

u(w − P + I)− u(w − P ) > u′(w − P + I)I,

and, using (15) and the concavity of u(·) again, we may write

u(w − P − L+ I)− u(w − P − L+ (1− q)I) < qIu′(w − P − L+ (1− q)I)

= qλI2/[(I − c)πβ∗].

Consequently

∂β∗

∂I
[u(w − P − L+ I)− u(w − P − L+ (1− q)I)]

<
qλI2

(I − c)
× u′(w − P + I)[u(w − P )− u(w − P −B)]

[u(w − P + I)− u(w − P −B)][u(w − P + I)− u(w − P )]

<
qλI

π(I − c)
× u(w − P )− u(w − P −B)

u(w − P + I)− u(w − P −B)
<

qλI

π(I − c)
.
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We thus have

(1− β∗)u′(w − P − L+ I) <
qλI

I − c
− λ(1− q)Ic

(I − c)2
= λI

qI − c
(I − c)2

< 0,

which contradicts β∗ < 1. We thus have q = c/I and thus α = α∗(I, c/I) = 0.

F Proof of proposition 5

For the sake of brevity, the proof is made in the case of a given nitpicking
technology as in Proposition 2. It extends straightforwardly to an optimal
nitpicking strategy as defined in Proposition 3. Let ψ(q) be the value function
of Problem 5, with β∗ = β∗(I, P, q) given by (6) instead of β∗ = β∗(I, P ).
The Envelope Theorem gives

ψ′(q) = πβ∗(I, P, q)
∂E

∂q
[u(w−P−L+(1−z̃)I)|q]

∣∣
I=I∗(q),P=P ∗(q)+

λ∗(q)πI∗(q)2

I∗(q)− c

−π ∂β∗(I, P, q)

∂q

∣∣∣∣
I=I∗(q),P=P∗(q)

{u(w−P ∗(q)−L+I∗(q))−E[u(w−P−L+(1−z̃)I)|q]}.

where the last bracketed term tends to 0 when q → 0. As a result, we have
ψ′(0) > 0 which implies q > 0 for an optimal contract.

G Proof of lemma 2

Using I(`) ≥ 0 allows us to write

EU(`, ˆ̀) ≤ β(ˆ̀)Eu(w−P−`+I((1−z(x̃))`)−B)+[1−β(ˆ̀)]u(w−P−`+I(ˆ̀)+I(`))

if ˆ̀> `. Furthermore, using β(ˆ̀) ≥ β(`) if ˆ̀> ` implies

EU(`) ≥ β(ˆ̀)Eu(w−P − `+ I((1− z(x̃))`) + [1− β(ˆ̀)]u(w−P − `+ I(`)).

Hence, a sufficient condition for EU(`) ≥ EU(`, ˆ̀) to be satisfied is writ-
ten as

β(ˆ̀){Eu(w − P − `+ I((1− z(x̃))`)− Eu(w − P − `+ I((1− z(x̃))`)−B)}
≥ [1− β(ˆ̀)]{u(w − P − `+ I(ˆ̀) + I(`))− u(w − P − `+ I(`))}.
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We have

Eu(w − P − `+ I((1− z(x̃))`))− Eu(w − P − `+ I((1− z(x̃))`)−B)

=

∫ B

0

∫ 1

0

u′(w − P − `+ I((1− z(x̃))`)− b)dG(x)db

≥
∫ B

0

u′(w − P − `+ I(`)− b)db

= u(w − P − `+ I(`))− u(w − P − `+ I(`)−B)

Since I(·) is non-decreasing, we have u′(w − P − `+ I(`)− b) ≤ u′(w − P −
`+ I((1− z(x)) `)− b) for all x ∈ [0, 1]. Consequently, a sufficient condition
for EU(`) ≥ EU(`, ˆ̀) is given by

u(w−P−`+I(`)) ≥ β(ˆ̀){u(w−P−`+I(`)−B)}+[1−β(ˆ̀)]u(w−P−`+I(`)+I(ˆ̀)).

If (7) is satisfied for all ˆ̀∈ (0, L], then individuals with wealth w−P do
not benefit from choosing one of the lotteries Z(ˆ̀) ≡ (−B, β(ˆ̀); I(ˆ̀), 1−β(ˆ̀)),
ˆ̀∈ (0, L]. Thus, using I(`) ≤ `, under NIARA preferences it is also true for
individuals with wealth w − P − ` + I(`) ≤ w − P , and consequently if (7)
holds we have EU(`) ≥ EU(`, ˆ̀) for all ` ∈ (0, ˆ̀).

H Proof of proposition 6

Denote by

L(I(·), P, z(·), λ) ≡ Eu∗(I(˜̀), P, z(x̃))+λ{P−πE[I(`)I((1−z(x̃))`)/(I(˜̀)−c˜̀)]}

the Lagrangian of program (9) neglecting the constraint on I(˜̀). Suppose
that z(x) = 0 for all x ∈ [0, 1] at an optimal solution. The first-order
optimality condition for P simplifies to

∂L/∂P = −(1− π)u′(w − P )− πEu′(w − P − ˜̀+ I(˜̀)) + λ = 0. (16)

We deduce from the concavity of u(·) and I(`) ≤ ` for all ` that Eu′(w−
P − ˜̀ + I(˜̀)) ≥ u′(w − P ) and (16) implies Eu′(w − P − ˜̀ + I(˜̀)) ≥ λ
with a strong inequality if I(`) < ` on a positive measure subset of (0, L].
Furthermore, a point-wise maximization gives

∂L/∂I(`) = πf(`){u′(w− P − `+ I(`))− λ[I(`)− 2c`]I(`)/[I(`)− c`]2} ≥ 0
(17)
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for all `, with an equality if I(`) < `. As [I(`) − 2c`]I(`) < [I(`) − c`]2, we
would have

u′(w − P − `+ I(`)) < λ ≤ Eu′(w − P − ˜̀+ I(˜̀))

for all ` such that I(`) < ` which is impossible. We thus have I(`) = ` for
all ` ∈ (0, L]. Regarding the nitpicking strategy, we have

∂L
∂z(x)

= −πg(x)E

[
˜̀I ′((1− z(x))˜̀)

[
β(˜̀)u′(w − P − ˜̀+ I((1− z(x))˜̀))− λI(˜̀)

I(˜̀)− c˜̀

]]
.

Using z(x) = 0, I(`) = ` and λ = u′(w − P ) gives

∂L
∂z(x)

>
πcλg(x)

1− c

for all x such that g(x) > 0, which contradicts z(x) ≡ 0.

I Proof of proposition 7

Consider the optimal contract {I, P, z(·)} characterized in Section 2.2 under
the assumption e = 1. Let Ze be defined by

u(w − P − L+ (1− Ze)I) ≡
∫ 1

0

u(w − P − L+ (1− z(x))I)dGe(x)

As G0 FOSD G1, we have Z0 > Z1. If d0 = d1 = d and π0 = π1 = π then

Eu∗1−Eu∗0 = πβ∗(I, P )[u(w−P−L+(1−Z1)I)]−u(w−P−L+(1−Z0)I) > 0.

Consequently, there exist ε, ε′ > 0 such that Eu∗1 − d1 > Eu∗0 − d0 if
d1 − d0 < ε and π0 − π1 < ε′.
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